THE MOLECULAR STRUCTURE OF DL-BI-O-TRIMETHYL-CIS-BRAZILANE N.L. Isaacs (la) and M.F. Mackay (lb)

Laboratory of Molecular Biophysics, Department of Zoology, South Parks Road, Oxford OX1 3PS, England. (Received in UK 5 April 1976; accepted for publication 23 April 1976)

Bi-O-trimethyl-*cis*-brazilane, $C_{38}H_{38}O_8$, is a derivative of the natural product *d*-brazilin, $C_{16}H_{14}O_5$. The latter was first isolated in crystalline form by Chevreul in 1808 (2) from Brazil-wood, a tree occurring in various species of *Caesalpinia*, and has been the subject of extensive chemical study since late last century (3). The structure of brazilin has been known as a result of almost fifty years work by Perkin and Robinson (3,4). A recent synthesis of *dl*-brazilin starting with O-trimethyldeoxybrazilone involved synthesis of O-trimethylbrazilane as an intermediate (5). As this optically inactive compound was dimeric (6), bi-O-trimethyl-*cis*-brazilane shown here as (I), could form a racemate or a *meso* compound in which the two monomers comprising the molecule are of opposite chirality.

(I)

DL-Bi-O-trimethyl-*cis*-brazilane, $C_{38}H_{38}O_8$, forms monoclinic crystals belonging to the space group $P2_1/c$, with a = 16.701(6), b = 8.037(2), c = 23.600(9) Å, $\beta = 93.10(2)^{\circ}$ and Z = 4. The structure was solved by direct methods and refined with 2355 terms (I > 401) measured on a Hilger and Watts four-circle diffractometer with CuK α radiation. Anisotropic refinement of the non-hydrogen atoms by block-diagonal least-squares has yielded a reliability index, $R = \Sigma \Delta F/\Sigma F_{c}$, of 0.10. No hydrogen atom parametels were included. A view of the molecule given in Fig. 1 shows it to consist of two brazilanyl groups which are of the same chirality and which are linked by the bond C(11) - C'(11) into the dimer. The molecule has a non-crystallographic two-fold symmetry axis perpendicular to this bond, viewed down which the configuration is staggered. Apart from C(10), C(14) and the methyl carbons, the non-hydrogen atoms of the brazilanyl group lie nearly in two planes mutually inclined to render it approximately butterfly in shape. Consequently, ring B is envelope in form and ring C adopts a severely distorted boat (verging on a sofa) conformation. At the present stage of refinement, the distance between the calculated H positions at C(10) and C'(10) is 2.23 Å and the C(11) - C'(11) bond is 1.64 Å. Refinement is continuing and more accurate details will be presented later. The crystal is a racemate containing D and L molecules symmetry-related by the crystallographic symmetry.

Fig. 1.

Acknowledgement

We are grateful to the late Sir Robert Robinson for suggesting this interesting problem and we thank Dr. R.H. Jaeger who kindly prepared the crystals.

FOOTNOTES AND REFERENCES

- 1. (a) Present address: IBM Thomas J. Watson Research Centre, P.O. Box 218, Yorktown Heights, New York 10598, U.S.A.
 - (b) Present address: Department of Physical Chemistry, La Trobe University, Bundoora, Victoria, Australia 3083.
- M.E. Chevreul, Ann. Chim., <u>66</u>, 225 (1808).
- 3. R. Robinson, Bull de la Soc. Chim. de France, 1, 125 (1958).
- 4. W.H. Perkin and R. Robinson, J. Chem. Soc., <u>91</u>, 1073 (1907); R. Robinson, Chemistry of Carbon Compounds, Vol. IV part B (edited by E.H. Rodd), p. 1005, Elsevier Publishing Co., Inc., New York (1954).
- F. Mosingh and R. Robinson, *Tetrahedron*, <u>26</u>, 281 (1970); J.N. Chatterjea, R. Robinson and M.L. Tomlinson, *Ibid.*, <u>30</u>, 507 (1974).
- 6. R.H. Jaeger, P.M.E. Lewis and R. Robinson, Ibid., 30, 1295 (1974).